Badania


PhET: Badania i rozwój: 
Sposób projektowania symulacji PhET oraz proces badawczy udoskonalania symulacji w celu jak najlepszego promowania nauki.



PhET prowadzi badania zarówno nad projektem, jak i wykorzystaniem interaktywnych symulacji, aby lepiej zrozumieć:
  1. Jakie cechy sprawiają, że te narzędzia są skuteczne w nauce i dlaczego
  2. Jak uczniowie angażują się i wchodzą w interakcję z tymi narzędziami, aby się uczyć, i co wpływa na ten proces
  3. Kiedy, jak i dlaczego te narzędzia są skuteczne w różnych środowiskach edukacyjnych
Zasady projektowania symulacji PhET opierają się na badaniach dotyczących sposobu uczenia się uczniów (Bransford i in., 2000) oraz na naszych wywiadach symulacyjnych (patrz Proces projektowania PhET). W każdej symulacji przeprowadza się od czterech do sześciu wywiadów w stylu głośnego myślenia z poszczególnymi studentami. Wywiady te stanowią bogate źródło danych do studiowania projektowania interfejsów i uczenia się uczniów. Wygląd i działanie PhET krótko opisuje nasze zasady projektowania interfejsu, a pełne omówienie można znaleźć w dwóch artykułach autorstwa Adams i in., 2008.

Wyszukaj odpowiedzi na najczęściej zadawane pytania:

"Czy symulacje PhET mogą zastąpić prawdziwy sprzęt laboratoryjny?"
Nasze badania pokazały, że symulacje PhET są bardziej skuteczne w zrozumieniu koncepcyjnym; jednak istnieje wiele celów praktycznych laboratoriów, których symulacje nie obejmują. Na przykład określone umiejętności związane z funkcjonowaniem sprzętu. W zależności od celów twojego laboratorium, bardziej efektywne może być użycie samych symulacji lub kombinacji symulacji i prawdziwego sprzętu.

"Czy uczniowie nauczą się, jeśli po prostu powiem im, żeby poszli do domu i pobawili się symulacją?"
Większość uczniów nie ma potrzeby spędzania czasu wolnego na zabawie z symulacją naukową (są zabawne, ale nie aż tak), chyba że istnieje bezpośrednia motywacja, taka jak ocena. Jest to jeden z powodów, dla których realizujemy projekt, jak najlepiej zintegrować symulacje z zadaniami domowymi.

„Gdzie jest najlepsze miejsce do korzystania z symulatorów PhET w moim kursie?”
Stwierdziliśmy, że symulacje PhET są bardzo skuteczne podczas wykładów, zajęć w klasie, laboratorium i w pracach domowych. Zostały zaprojektowane z minimalną ilością tekstu, dzięki czemu można je łatwo zintegrować z każdym aspektem kursu.

Nasze bezpośrednie zainteresowania to:

Wykorzystanie analogii do budowania zrozumienia: uczniowie wykorzystują analogie w symulacjach, aby nadać sens nieznanym zjawiskom. Reprezentacje odgrywają kluczową rolę w posługiwaniu się przez uczniów analogią.

Symulacje jako narzędzia do zmiany norm obowiązujących w klasie: symulacje są kształtowane przez społeczno-kulturowe normy naukowe, ale można ich również używać do zmiany tradycyjnych norm dotyczących zaangażowania uczniów w klasie.

Specyficzne cechy symulacji promują naukę i zaangażowane dociekanie: nasze zasady projektowania identyfikują kluczowe cechy symulacji, które czynią je produktywnymi narzędziami angażującymi uczniów. Teraz chcemy szczegółowo zbadać, w jaki sposób każda funkcja wpływa na zrozumienie ucznia.

Włączenie symulacji do pracy domowej: symulacje mają unikalne funkcje, które nie są dostępne w większości narzędzi do nauki (interaktywność, animacja, dynamiczna informacja zwrotna, pozwalają na produktywną eksplorację)

Skuteczność symulacji chemicznych: właśnie zaczęliśmy badać, gdzie i w jaki sposób symulacje chemiczne mogą być skutecznymi narzędziami do nauki.

Publikacje i prezentacje

Ważne funkcje dla efektywnego projektowania symulacji (głównie dane wywiadu)

Badanie wykorzystania w klasie

O symulacjach PhET

Postrzeganie nauki przez uczniów

Inne prace badaczy PhET

Publikacje na temat symulacji PhET autorstwa innych badaczy

  • Constructionism and microworlds as part of a 21st century learning activity to impact student engagement and confidence in physics, Wickham, C. M., Girvan, C., & Tangney, B., (2016, Feb). Sipitakiat, A., & Tutiyaphuengprasert, N. (Eds.) Proceedings of Constructionism 2016. Paper presented at Constructionism 2016, Bangkok Thailand (34-41).
  • Use of physics simulations in whole class and small group settings: Comparative case studies, A.L. Stephens & J.J. Clement , Computers & Education 86, 137-156, 2015.
  • Balancing Act: Do Preservice Teachers in an Integrated Mathematics/Science Course Categorize a Levers Problem as Mathematics or Science?, P. Cormas, Annual meeting of the Association for Science Teacher Education (ASTE), San Antonio, January, 2014.
  • Investigating the Relationship Between the Substance Metaphor for Energy and Its Proposed Affordances and Limitations, L. M. Goodhew and A. D. Robertson, in preparation for 2014 Physics Education Research Conference Proceedings, edited by P. V. Englehardt, A. D. Churukian, and D. L. Jones (AIP, Minneapolis, MN), 2014.
  • Not a magic bullet: the effect of scaffolding on knowledge and attitudes in online simulations, Roll, I., Briseno, A., Yee, N., & Welsh, A., In J. Polman, E. Kyza, I. Tabak, & K. O’Neill, proceedings of the International Conference of the Learning Sciences. (30%), 2014.
  • Students’ adaptation and transfer of strategies across levels of scaffolding in an exploratory environment, Roll, I., Yee, N., Briseno, A, In proceedings of the International Conference on Intelligent Tutoring Systems. Honolulu, HI, 2014.
  • The impact of computer simulations as interactive demonstration tools on the performance of Grade 11 learners in electromagnetis, Kotoka J and Kriek J., African Journal of Research in Mathematics, Science and Technology Education 18(1), 2014.
  • Animation or Simulation: Investigating the Importance of Interactivity for Learning Solubility Equilibria, Akaygun, S. & Jones, L. L., In J. P. Suits & M. J. Sanger, (Eds.) Pedagogic Roles of Animations and Simulations in Chemistry Courses, (pp. 127-159), Washington, DC: Oxford University Press, 2014.
  • How Does Level of Guidance Affect Understanding When Students Use a Dynamic Simulation of Liquid-Vapor Equilibrium?, Akaygun, S. & Jones, L. L., In I. Devetak, & S. A. Glazar, (Eds), Learning with understanding in the chemistry classroom, (pp. 243-263), Dordrecht, The Netherlands: Springer, 2014.
  • Multimodal study of visual problem solving in chemistry with multiple representations, S. Hansen, Dissertation, Teachers College, Columbia University, 2014.
  • Designing online scaffolds for interactive computer simulation, Chen, C.-H., Wu, I.-C., & Jen, F.-L, Interactive Learning Environments, 21(3), 229–243, 2013.
  • Computer simulations and clear observations do not guarantee conceptual understanding, Renken, M. D., & Nunez, N., Learning and Instruction, 23, 10–23, 2013.
  • Applying cognitive developmental psychology to middle school physics learning: The rule assessment method, Hallinen, N. R., Chi, M., Chin, D. B., Prempeh, J., Blair, K. P., & Schwartz, D. L., 1513, 158–161, 2013.
  • “Re-Simulating”: Physics Simulations for Blind Students, Bulbul, M. S., Demirtas, D., Garip, B., & Oktay, O., Presented at the New Perspectives in Science Education., 2013.
  • Electromagnetic Induction, Yochum, H., et.al., Science & Children. 51(2):63-67, 2013.
  • Teacher candidates' knowledge construction with technology, Zhou, G., & Xu, Z., Knowledge construction and multimodal curriculum development (pp.112-127). IGI Global, 2013.
  • Enhancing Students’ Scientific Literacy In Science Education Using Interactive Simulations: A Critical Literature Review, Fan, X. & Geelan, D.R., Journal of Computers in Mathematics and Science Teaching, 32(2), 125-171, 2013.
  • Radiation and Atomic Literacy for Nonscientists, Johnson, A, Science 342(6157): 436-437, 2013.
  • Students’ Conceptual Change in Electricity and Magnetism using Simulations: a Comparison of Cognitive Perturbation and Cognitive Conflict, Dega, BG, Kriek J & Mogese, TF, Journal of Research in Science Teaching 50(6)pp.677-698, 2013.
  • Teacher education using computer simulations—pre and in-service primary school teacher training to teach science, Pinto, A., Barbot, A., Viegas, C., Silva, A. A., Santos, C. A., & Lopes, J. B., Learning Science in the Society of Computers, 28–36., 2012.
  • Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry, Sun, D., & Looi, C.-K., Journal of Science Education and Technology, 2012.
  • The learning effects of computer simulations in science education, Rutten, N., van Joolingen, W. R., & van der Veen, J. T., Computers & Education, 58(1), 136–153, 2012.
  • Adding value to physics education technology simulations. , Kruhlak, R. J., Vanholsbeeck, F., & Coghill, C., 2012.
  • Inquiry-based Lessons and PhET Simulations - A Great Match for Middle School Classrooms, Zimmer, E., Presented at the Society for Information Technology & Teacher Education International Conference 2012: AACE, Chesapeake, VA., 2012.
  • Effectiveness of Computer Simulations in Physics Teaching/Learning, Aklilu, T., LAMBERT Academic Publishing GmbH &Co. KG and licensors, 2012.
  • Effects of Computer Simulations on Undergraduate Science Students Physics Achievement, Aklilu, T., Bereket, G., Melak, M., & Tefaye, G., A stand-alone paper virtually presented at the 2012 Annual international Conference of NARST held on March 25-28/2012 at Indianapolis, Indian, USA, 2012.
  • Integrating Information Technology and Science Education for the Future: A Theoretical Review on the Educational Use of Interactive Simulations, Xinxin Fan & David Geelan, in Proceedings of the 2012 Australian Computers in Education Conference: It's time, Australian Council for Computers in Education, Australia, 2012.
  • Effectiveness of Scientific Visualizations in Year 11 Chemistry and Physics Education, David Geelan, in Proceedings of the 2012 Australian Computers in Education Conference: It's time, Australian Council for Computers in Education, Australia, 2012.
  • The usefulness of log based clustering in a complex simulation environment, Kardan, S., Roll, I., & Conati, C. (to appear), In S. Trausen-Matu & K. Boyer, proceedings of the International Conference on Intelligent Tutoring Systems, 2012.
  • Identifying & Resolving Problematic Student Thinking About Ionizing Radiation, Maidl, R., et al., National Conference on Undergraduate Research, Weber State College, Ogden, UT, UNC Asheville, 2012.
  • Learning Science Through Computer Games and Simulations., Committee on Science Learning Computer Games, S. A. E., Education, B. O. S., Education, D. O. B. A. S. S. A., National Research Council, National Academies Press, 2011.
  • Science modelling in pre-calculus: how to make mathematics problems contextually meaningful. , Sokolowski, A., Yalvac, B., & Loving, C., International Journal of Mathematical Education in Science and Technology, 42(3), 283–297, 2011.
  • Discussion-based strategies for use of simulations and animations in middle and high school science classrooms, Leibovitch, A., Stephens, L., Price, N., & Clement, J., Proceedings 
of
 the 
NARST
 2011
 Annual 
Meeting, 2011.
  • Effectiveness of Computer Simulations in the Teaching/ Learning of Physics, Aklilu, T., Tilahun T., and Mesfin T., A stand-alone paper presented at the 2011 Annual international Conference of NARST held on April 3-6/2011 Orlando, Florida, USA, 2011.
  • The use of Interactive Computer Simulations with regard to access to Education – a social justice issue, Kaheru, SJM, Mpeta M and Kriek J, Journal of Educational Studies 10(2) pp 89 - 106, 2011.
  • The contribution of simulations to the practical work of foundation physics students at the University of Limpopo, Mhlongo, R, Kriek, J and Basson I, Multicultural education and technology journal. 5(4) p 288-302, 2011.
  • In-service science teachers’ views about learning physics after a one week workshop, Ramlo, S. & Nicholas, J., Human Subjectivity, 1, pp 109-120, 2010.
  • Teachers’ beliefs and their intention to use interactive simulations in their classrooms, Kriek, J. and Stols, G., South African Journal of Education 30 pp. 439 - 456, 2010.
  • Spatial Learning and Computer Simulations in Science, Lindgren, R., & Schwartz, D. L., International Journal of Science Education, 31(3), 419–438, 2009.
  • Student perspectives on learning physics and their relationship with learning force and motion concepts: A study using Q methodology, Ramlo, S., Human Subjectivity, 2, pp 73-90, 2008.
  • Pengembangan Lembar Kerja Siswa Berbasis Inkuiri Melalui Media Virtual PhET Untuk Melatihkan Keterampilan Berpikir Kritis Siswa Pada Materi Pemanasan Global, K. Rohmah, Rachmadiarti F. & Setiawan B., Universitas Negeri Surabaya (Indonesian).
  • Kerja laboratorium Melalui Phet untuk meremediasi miskonsepsi siswa kelas VIII SMP Negeri 1 Sungai Raya pada materi Hukum Archimedes, Diar Dwi Winarto, Tanjungpura University (Indonesian).
  • Scientific Inquiry in Mathematics: A Case of Implementing Scientific Simulations for Analyzing Problems on Motion., Sokolowski, A..
  • Teachers using interactive simulations to scaffold inquiry instruction in physical science education, Geelan, D.R. & Fan, X., In J. Gilbert and B. Eilam (Eds.) Science Teachers' Use of Visual Representations. Dordrecht: Springer..
  • Action Research Paper for Master's in Interdisciplinary Studies at University of Northern Colorado: The Effect of Computer Simulations on Learning High School Physics, K. Bibbey.
  • Impact of Electronic Simulations on students’ learning in Lebanese 10th Grade Electricity Courses. (Ph.d research), F. Yehya.
  • Evaluating a Novel Instructional Sequence for Conceptual Development in Physics Using Interactive Simulations, Fan, X., Geelan, D. & Gillies, R., Submitted to the International Journal of Science Education, Under Review.