PhET Tips for Teachers: Isotopes and Atomic Mass

We made the Isotope sim to follow the Build an Atom sim. The Build an Atom sim allows students to make isotopes, but the Isotope sim shows the abundance and how it relates to the average atomic mass of an element. For applications of isotopes, see our suite of nuclear chemistry sims: Nuclear Fission, Alpha Decay, Beta Decay or Radioactive Dating Game.

Tips for controls:

Make Isotopes Tab (Isotopes atoms with same # of protons and different # of neutrons.)
- Select an element in the first 2 rows of the periodic table; the most abundant isotope of that element appears on the scale.
- Add or remove neutrons, but select element on periodic table to change the number of protons.
- The scale shows the mass number or the atomic mass.

Second Tab: Mix Isotopes
- Select an element in the first 3 rows of the periodic table; the stable isotopes of that element appear in buckets (the unstable isotopes 3H and 14C are not included).
- Add isotopes to the chamber in two ways: you can drag in the isotopes (up to 10 of each) or click the More button to use sliders (up to 100 of each isotope); the Less button returns the buckets.
- Select Nature's mix to see the actual composition and average atomic mass. The ratio of isotopes is represented by 1000 isotopes in the chamber.
- To make the background WHITE to help with projection or black-line masters, use Options menu.

Insights into student use / thinking:
- The mass number is the sum of the protons and neutrons in the atom. If students need review of this use Build an Atom
- In college interviews, students wanted to select other common elements, like gold; you could add more elements in an activity.
- In middle school interviews, students liked to draw pictures with the isotopes.
- In all interviews, students try to match Nature’s mix using My mix; this is not always possible.

Important modeling notes / simplifications:
- If you make an isotope that is not listed as stable in the NIST table, the nucleus shakes and the word “Unstable” appears under the nucleus.
- The atomic mass is relative to 12C, which is defined as 12 amu. The sim only shows the atomic mass for stable isotopes (the exceptions are 3H and 14C).
- The sim computes the average atomic mass of the isotopes in the chamber (shown on a line chart), and the percentage of each isotope (shown as a pie chart).
- The sim is not able to show the exact ratio for some elements (for example, the exact ratio for helium would take 1 3He isotope and 999,999 4H isotopes).
- While the size of different atoms is not a main learning goal, the sim shows the relative electron cloud size for each element.

Suggestions for sim use:
- For tips on using PhET sims with your students see: Guidelines for Inquiry Contributions and Using PhET Sims
- The simulations have been used successfully with homework, lectures, in-class activities, or lab activities. Use them for introduction to concepts, learning new concepts, reinforcement of concepts, as visual aids for interactive demonstrations, or with in-class clicker questions. To read more, see Teaching Physics using PhET Simulations
- For activities and lesson plans written by the PhET team and other teachers, see: Teacher Ideas & Activities

Authors: Kelly Lancaster, Trish Loeblein

Updated: May 2011