


In the **Atomic Interactions** simulation, students investigate how the relationship between attractive and repulsive forces govern the interaction between atoms.



## Complex Controls

- The background of the simulation can be changed for easier projection by going to the PhET menu bar, selecting Options, and checking Projector mode.



## Insights into Student Use

- The force arrows are off by default as students initially found them overwhelming in interviews.
- Student interviews also indicated that students found the force arrows helpful for making sense of the potential energy graph.

## Model Simplifications

- The interaction between the two atoms is modeled using the Lennard-Jones potential.
- The atomic radius, which corresponds to  $\sigma$  (sigma), is the Van der Waals radius.
- For the oxygen-oxygen, epsilon ( $\epsilon$ ) roughly corresponds to the average bond energy. Sigma ( $\sigma$ ) was calculated based on the average bond length as the bottom of the potential energy well is located at the equilibrium bond distance.
- The bonding behavior for oxygen-oxygen is not explicitly shown in this simulation, as it would require a third atom to carry off excess energy. However, the well depth and forces between the oxygen atoms are much larger, consistent with a bonding pair.

## Customization Options

Query parameters allow for customization of the simulation, and can be added by appending a '?' to the sim URL, and separating each query parameter with a '&'. The general URL pattern is:

`...html?queryParameter1&queryParameter2&queryParameter3`

For example, in Atomic Interactions, if you want to turn on projector mode (`colorProfile=projector`), with links disabled (`allowLinks=false`) use:

`https://phet.colorado.edu/sims/html/atomic-interactions/latest/atomic-interactions_all.html?colorProfile=projector&allowLinks=false`

To run this in Spanish (`locale=es`), the URL would become:

`https://phet.colorado.edu/sims/html/atomic-interactions/latest/atomic-interactions_all.html?locale=es&colorProfile=projector&allowLinks=false`

| Query Parameter and Description                                                                                                                                                                                                                      | Example Links                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| <code>locale</code> - specify the language of the simulation using ISO 639-1 codes. Available locales can be found on the simulation page on the <a href="#">Translations tab</a> . Note: this only works if the simulation URL ends in “_all.html”. | <code>locale=es</code> (Spanish)<br><code>locale=fr</code> (French) |
| <code>colorProfile</code> - changes simulation colors for easier projection.                                                                                                                                                                         | <code>colorProfile=projector</code>                                 |
| <code>allowLinks</code> - when <code>false</code> , disables links that take students to an external URL. Default is <code>true</code> .                                                                                                             | <code>allowLinks=false</code>                                       |

## Suggestions for Use

### Sample Challenge Prompts

- Describe how attractive and repulsive forces influence the attraction between two atoms.
- Explain the relationship between the attractive forces between atoms and the potential energy graph for the atom pair.
- Compare and contrast the behavior and potential energy graph for all atom pairs.
- Describe what would need to happen for oxygen to form a diatomic bond.
- Define the values of  $\sigma$  and  $\epsilon$ .

See all published activities for Atomic Interactions [here](#).

For more tips on using PhET sims with your students, see [Tips for Using PhET](#).