Overview

Prerequisite Skills:
- Identify integers as positive and negative numbers.
- Graph integers on a number line.
- Understand absolute value as the distance a number is from zero on a number line.

Learning Goals:
- Identify additive inverses (zero pairs).
- Model addition of integers using protons and electrons, and extend this to a number line.
- Create a rule for adding integers.

Common Core Standards:
- [CCSS.Math.Content.7.NS.A.1.a](#) Describe situations in which opposite quantities combine to make 0.
- [CCSS.Math.Content.7.NS.A.1.b](#) Understand \(p + q \) as the number located a distance \(\left| q \right| \) from \(p \), in the positive or negative direction depending on whether \(q \) is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.
- [CCSS.Math.Content.7.NS.A.1.d](#) Apply properties of operations as strategies to add and subtract rational numbers.

Mathematical Practices:
1. Make sense of problems and persevere in solving them
2. Reason abstractly and quantitatively
4. Model with mathematics.
5. Use appropriate tools strategically

Florida Science Standards:
- [SC.912.P.8.4](#) Explore the scientific theory of atoms (also known as atomic theory) by describing the structure of atoms in terms of protons, neutrons and electrons, and differentiate among these particles in terms of their mass, electrical charges and locations within the atom.

Materials:
- PhET Build an Atom simulation:
- Computers/tablets for each student or pair of students
- Atomic Addition Activity Sheet (1 per student)

Estimated Time:
Approximately 45 minutes

Atomic Addition

Warm Up

Activate prior knowledge using this problem as a warm-up:
1) Draw a number line from -5 to 5.
2) Graph the following numbers on the number line: 2, 0, -4, -2
3) Compare the absolute values of 2 and -2.

OR: Depending on students’ background knowledge, the teacher may want to give an introduction to atoms and elements before exploring the sim. This can be done by viewing the first 4 minutes of the following video:
- https://www.youtube.com/watch?v=R1RMV5ghwyE#action=share

Simulation Introduction

Teacher will...	Students will...
- Ask student to distribute activity sheet. | - Explore the simulation, building whatever atoms they choose.
- Encourage students to take a few minutes to explore the Build an Atom simulation, letting them know they will be looking at the net charge of an element for today’s lesson. | - Respond to teachers’ informal questioning.
- Circulate the room and ask students: | - Jot down discoveries as #1 on the activity worksheet.
1. What do you think net charge means?
2. What happens to the net charge when you add protons? Neutrons? Electrons?
3. What does neutral mean?
4. When does the mass number change?
5. What could represent positive/negative integers? What could represent zero?
6. Why do you think sometimes the net charge is circled?
7. What does the arrow indicate with the net charge?

- Ask students to briefly share what they wrote down for #1 on the activity sheet, and discuss any of the questions above.

Guided Exploration

15-20 minutes

Teacher will...

- Encourage students to begin working on #2-12 in pairs. Try to give them at least 5 minutes where the teacher is silent before probing/aiding.
- Circulate the room to be available for questions and ask probing/pushing questions, such as:
 1. Do the neutrons affect the net charge?
 2. If you want a negative net charge, do you need more protons or electrons?
 3. What happens if you only use electrons?
 4. What happens if you only use protons?
 5. What happens if you only use neutrons?
 6. What happens if you make an atom with the same number of protons, neutrons, and electrons?
 7. Can you make an atom with a net charge of +3? -4? -5?
 8. Can you make a Carbon atom/ion with a net charge of -2?
 9. Can you make a Hydrogen atom with a net charge of +2?
 10. Can you make a Neon atom that is neutral or has a net charge of 0?

Students will...

- Complete #2-12 on the activity sheet.
- Respond to teacher questions.
- Ask questions or ask for help as needed.

Discussion and Summary

10-15 minutes

Teacher will...

- Write headings on the whiteboard: Positive Sum, Negative Sum, and Sum of Zero. Then, ask students to write their addition sentences from #12 under the appropriate headings.
- Facilitate a class discussion to bridge an understanding across representations. Remind students to cover their laptop screens with their worksheets so they are not distracted. Use an established teaching strategy such as pulling name sticks, or small group discussions (print out or display questions and have groups talk to each other and write down consensus for the “speaker” to share aloud with class). Students may want to present their worksheets using document camera as they make their points. Sample questions include:
 1. Why are the neutrons not represented in the net charge?
 2. How can we represent an atom’s charge with addition of integers?
 3. What do you notice about all of our addition sentences that

Students will...

- Answer questions and question answers: students should be able to determine if they agree/disagree with others’ claims and justify their own responses.
- Some students may go to the board to share findings, then summarize and record main ideas.
4. What do you think a zero pair is? How many electrons and protons make a net charge of zero?
5. Do you think it matters whether we write -5 + 7 or 7 + (-5)? Does it matter whether we write 3 + 4 or 4 + 3?
6. What does it seem like is actually happening when you combine integers with different signs? (Or when you add 5 protons and 3 electrons to get a net charge of 2?)
7. Can we create a rule that describes the number of protons, electrons, and the net charge?
8. Can we revise our rule to refer to integers instead of parts of an atom?
9. How can we represent this on a number line?
10. Are there any other discoveries we haven’t yet discussed?

Informal Assessment

<table>
<thead>
<tr>
<th>Teacher will...</th>
<th>Student will...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit Ticket:</td>
<td>Complete exit ticket.</td>
</tr>
</tbody>
</table>

On an index card, draw a model and find the sum for each:

<table>
<thead>
<tr>
<th>Front of Index Card</th>
<th>Back of Index Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 + (-5)</td>
<td>-4 + 4</td>
</tr>
<tr>
<td>-2 + 6</td>
<td>6 + (-5)</td>
</tr>
</tbody>
</table>

Going forward...

- Teacher should try to make connections between modeling using the building an atom sim and modeling addition of integers using a number line.
- Teachers can refer to the Build an Atom sim to introduce subtracting negative integers by starting with a specific atom, then asking what happens when you take away one electron?