Даследаванні


PhET: Research and Development:
How PhET simulations are designed, and the research process of refining the simulations to best promote learning.



PhET праводзіць даследаванні як выкарыстоўваць інструменты кіравання інтэрактыўнымі сімулятарамі, каб яны былі лепш зразумелымі:
  1. Якія характарыстыкі робяць гэтыя інструменты эфектыўнымі для навучання і чаму
  2. Як навучэнцы займаюцца і ўзаемадзейнічаць з гэтымі інструментамі, каб атрымаць вынік, і што ўплывае на гэты працэс
  3. У якім выпадку і чаму гэтыя інструменты эфектыўныя ў розных навучальных асяроддзях
Прынцыпы мадэліравання PhET заснаваны на даследаваннях аб тым, як навучэнцы вучацца (Bransford і інш., 2000), а таксама на нашых гутарках па выніках мадэліравання (гл PhET Працэс праектавання ). Такія гутаркі праводзяцца з асобнымі навучэнцамі па кожным мадэліраванні. Гэтыя гутаркі служаць багатай крыніцай дадзеных для вывучэння дызайну інтэрфейсу і навучання навучэнцаў. PhET Look and Feel коратка апісвае нашы прынцыпы праектавання інтэрфейсу і поўнае абмеркаванне змяшчаецца ў двух артыкулах па Adams і інш. 2008

Навуковыя адказы на часта задаваемыя пытанні:

"Ці могуць PhET сімулятары замяніць рэальнае лабараторнае абсталяванне?"
Нашы даследаванні паказалі, што PhET сімулятары з'яўляюцца больш эфектыўнымі для канцэптуальнага разумення вывучаемых пытанняў. Але разам з тым, ёсць шмат практычных лабараторных работ, якія выконваюцца толькі на рэальным абсталяванні. Напрыклад, калі выпрацоўваюцца спецыфічныя навыкі, якія адносяцца да функцыянавання абсталявання. У залежнасці ад мэтаў вашага занятку, вынік можа быць больш эфектыўным, калі выкарыстоўваць толькі сімулятары або спалучэнне сімулятараў і рэальнага абсталявання.

"Ці будзе карысць, калі я проста сказажу навучэнцам, каб вярнуўшыся дадому яны пагулялі з сімулятарам?"
Большасць навучэнцаў не маюць жадання, займацца дома мадэліраваннем самастойна ў свой вольны час, калі толькі не з'яўляецца прамая матывацыя звязаная з вучэбнай дзейнасцю на занятку. Гэта адна з прычын, чаму мы праводзім даследаванне, як найлепшым чынам інтэграваць сімулятары ў выкананне дамашніх заданняў.

"Дзе лепшае месца, каб выкарыстоўваць PhET сімулятары ў маім курсе?"
PhET сімулятары могуць быць вельмі эфектыўнымі ў лекцыі, пазакласных мерапрыемствах, практычных і лабараторных занятках і дамашняй працы. Яны распрацаваны з мінімальным тэкстам, так што яны могуць быць лёгка інтэграваныя ў кожны аспект курсу.

Нашы прынцыпы мадэліравання:

Выкарыстанне аналогіі для тлумачэння: Навучэнцы выкарыстоўваюць аналогіі ў сімулятарах, каб зразумець сэнс незнаёмых з'яў. Прадстаўленні гуляюць ключавую ролю ў выкарыстанні аналогіі навучэнцамі.

Мадэліраванне ў якасці інструмента для змены ў класе нормы: Сімулятары фарміруюцца пад уздзеяннем зместу і гістарычных традыцый навукі, але таксама можа быць выкарыстаны для змены традыцыйных падыходаў, калі навучэнцы займаюцца ў класе.

Асаблівасці сімулятараў у тым, што яны спрыяюць навучанню і пошуку: Нашы прынцыпы праектавання вызначаюць ключавыя характарыстыкі сімулятараў, якія робяць іх прадукцыйнымі ўстройствамі для ўключэння навучэнцаў у навучальны працэс. Цяпер мы хочам вывучыць ў дэталях, як кожная асаблівасць ўплывае на вучнёўскае разуменне.

Інтэграцыя сімулятараў у выкананне дамашніх заданняў: Сімулятары маюць унікальныя асаблівасці, якія не даступныя ў большасці навучальных дапаможнікаў (інтэрактыўнасці, анімацыі, дынамічнай адваротнай сувязі, што дазваляе выкарыстоўваць іх для прадуктыўнага пошуку)

Эфектыўнасць мадэліравання хіміі: Мы толькі пачалі даследаваць вобласць, дзе і як камп'ютэрнае мадэліраванне хімічных з'яў можа стаць эфектыўным сродкам навучання.

Публікацыі і прэзентацыі

Карысныя звесткі для эфектыўнай распрацоўкі мадэліравання (пераважна інтэрв'ю дадзеныя)

Даследаванні па выкарыстанні ў класе

Аб PhET сімулятарах

Успрыманне навучання навучэнцамі

Іншая праца па PhET даследаваннях

Публікацыі па PhET сімулятарах іншых даследчыкаў

  • Constructionism and microworlds as part of a 21st century learning activity to impact student engagement and confidence in physics, Wickham, C. M., Girvan, C., & Tangney, B., (2016, Feb). Sipitakiat, A., & Tutiyaphuengprasert, N. (Eds.) Proceedings of Constructionism 2016. Paper presented at Constructionism 2016, Bangkok Thailand (34-41).
  • Use of physics simulations in whole class and small group settings: Comparative case studies, A.L. Stephens & J.J. Clement , Computers & Education 86, 137-156, 2015.
  • Balancing Act: Do Preservice Teachers in an Integrated Mathematics/Science Course Categorize a Levers Problem as Mathematics or Science?, P. Cormas, Annual meeting of the Association for Science Teacher Education (ASTE), San Antonio, January, 2014.
  • Investigating the Relationship Between the Substance Metaphor for Energy and Its Proposed Affordances and Limitations, L. M. Goodhew and A. D. Robertson, in preparation for 2014 Physics Education Research Conference Proceedings, edited by P. V. Englehardt, A. D. Churukian, and D. L. Jones (AIP, Minneapolis, MN), 2014.
  • Not a magic bullet: the effect of scaffolding on knowledge and attitudes in online simulations, Roll, I., Briseno, A., Yee, N., & Welsh, A., In J. Polman, E. Kyza, I. Tabak, & K. O’Neill, proceedings of the International Conference of the Learning Sciences. (30%), 2014.
  • Students’ adaptation and transfer of strategies across levels of scaffolding in an exploratory environment, Roll, I., Yee, N., Briseno, A, In proceedings of the International Conference on Intelligent Tutoring Systems. Honolulu, HI, 2014.
  • The impact of computer simulations as interactive demonstration tools on the performance of Grade 11 learners in electromagnetis, Kotoka J and Kriek J., African Journal of Research in Mathematics, Science and Technology Education 18(1), 2014.
  • Animation or Simulation: Investigating the Importance of Interactivity for Learning Solubility Equilibria, Akaygun, S. & Jones, L. L., In J. P. Suits & M. J. Sanger, (Eds.) Pedagogic Roles of Animations and Simulations in Chemistry Courses, (pp. 127-159), Washington, DC: Oxford University Press, 2014.
  • How Does Level of Guidance Affect Understanding When Students Use a Dynamic Simulation of Liquid-Vapor Equilibrium?, Akaygun, S. & Jones, L. L., In I. Devetak, & S. A. Glazar, (Eds), Learning with understanding in the chemistry classroom, (pp. 243-263), Dordrecht, The Netherlands: Springer, 2014.
  • Multimodal study of visual problem solving in chemistry with multiple representations, S. Hansen, Dissertation, Teachers College, Columbia University, 2014.
  • Designing online scaffolds for interactive computer simulation, Chen, C.-H., Wu, I.-C., & Jen, F.-L, Interactive Learning Environments, 21(3), 229–243, 2013.
  • Computer simulations and clear observations do not guarantee conceptual understanding, Renken, M. D., & Nunez, N., Learning and Instruction, 23, 10–23, 2013.
  • Applying cognitive developmental psychology to middle school physics learning: The rule assessment method, Hallinen, N. R., Chi, M., Chin, D. B., Prempeh, J., Blair, K. P., & Schwartz, D. L., 1513, 158–161, 2013.
  • “Re-Simulating”: Physics Simulations for Blind Students, Bulbul, M. S., Demirtas, D., Garip, B., & Oktay, O., Presented at the New Perspectives in Science Education., 2013.
  • Electromagnetic Induction, Yochum, H., et.al., Science & Children. 51(2):63-67, 2013.
  • Teacher candidates' knowledge construction with technology, Zhou, G., & Xu, Z., Knowledge construction and multimodal curriculum development (pp.112-127). IGI Global, 2013.
  • Enhancing Students’ Scientific Literacy In Science Education Using Interactive Simulations: A Critical Literature Review, Fan, X. & Geelan, D.R., Journal of Computers in Mathematics and Science Teaching, 32(2), 125-171, 2013.
  • Radiation and Atomic Literacy for Nonscientists, Johnson, A, Science 342(6157): 436-437, 2013.
  • Students’ Conceptual Change in Electricity and Magnetism using Simulations: a Comparison of Cognitive Perturbation and Cognitive Conflict, Dega, BG, Kriek J & Mogese, TF, Journal of Research in Science Teaching 50(6)pp.677-698, 2013.
  • Teacher education using computer simulations—pre and in-service primary school teacher training to teach science, Pinto, A., Barbot, A., Viegas, C., Silva, A. A., Santos, C. A., & Lopes, J. B., Learning Science in the Society of Computers, 28–36., 2012.
  • Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry, Sun, D., & Looi, C.-K., Journal of Science Education and Technology, 2012.
  • The learning effects of computer simulations in science education, Rutten, N., van Joolingen, W. R., & van der Veen, J. T., Computers & Education, 58(1), 136–153, 2012.
  • Adding value to physics education technology simulations. , Kruhlak, R. J., Vanholsbeeck, F., & Coghill, C., 2012.
  • Inquiry-based Lessons and PhET Simulations - A Great Match for Middle School Classrooms, Zimmer, E., Presented at the Society for Information Technology & Teacher Education International Conference 2012: AACE, Chesapeake, VA., 2012.
  • Effectiveness of Computer Simulations in Physics Teaching/Learning, Aklilu, T., LAMBERT Academic Publishing GmbH &Co. KG and licensors, 2012.
  • Effects of Computer Simulations on Undergraduate Science Students Physics Achievement, Aklilu, T., Bereket, G., Melak, M., & Tefaye, G., A stand-alone paper virtually presented at the 2012 Annual international Conference of NARST held on March 25-28/2012 at Indianapolis, Indian, USA, 2012.
  • Integrating Information Technology and Science Education for the Future: A Theoretical Review on the Educational Use of Interactive Simulations, Xinxin Fan & David Geelan, in Proceedings of the 2012 Australian Computers in Education Conference: It's time, Australian Council for Computers in Education, Australia, 2012.
  • Effectiveness of Scientific Visualizations in Year 11 Chemistry and Physics Education, David Geelan, in Proceedings of the 2012 Australian Computers in Education Conference: It's time, Australian Council for Computers in Education, Australia, 2012.
  • The usefulness of log based clustering in a complex simulation environment, Kardan, S., Roll, I., & Conati, C. (to appear), In S. Trausen-Matu & K. Boyer, proceedings of the International Conference on Intelligent Tutoring Systems, 2012.
  • Identifying & Resolving Problematic Student Thinking About Ionizing Radiation, Maidl, R., et al., National Conference on Undergraduate Research, Weber State College, Ogden, UT, UNC Asheville, 2012.
  • Learning Science Through Computer Games and Simulations., Committee on Science Learning Computer Games, S. A. E., Education, B. O. S., Education, D. O. B. A. S. S. A., National Research Council, National Academies Press, 2011.
  • Science modelling in pre-calculus: how to make mathematics problems contextually meaningful. , Sokolowski, A., Yalvac, B., & Loving, C., International Journal of Mathematical Education in Science and Technology, 42(3), 283–297, 2011.
  • Discussion-based strategies for use of simulations and animations in middle and high school science classrooms, Leibovitch, A., Stephens, L., Price, N., & Clement, J., Proceedings 
of
 the 
NARST
 2011
 Annual 
Meeting, 2011.
  • Effectiveness of Computer Simulations in the Teaching/ Learning of Physics, Aklilu, T., Tilahun T., and Mesfin T., A stand-alone paper presented at the 2011 Annual international Conference of NARST held on April 3-6/2011 Orlando, Florida, USA, 2011.
  • The use of Interactive Computer Simulations with regard to access to Education – a social justice issue, Kaheru, SJM, Mpeta M and Kriek J, Journal of Educational Studies 10(2) pp 89 - 106, 2011.
  • The contribution of simulations to the practical work of foundation physics students at the University of Limpopo, Mhlongo, R, Kriek, J and Basson I, Multicultural education and technology journal. 5(4) p 288-302, 2011.
  • In-service science teachers’ views about learning physics after a one week workshop, Ramlo, S. & Nicholas, J., Human Subjectivity, 1, pp 109-120, 2010.
  • Teachers’ beliefs and their intention to use interactive simulations in their classrooms, Kriek, J. and Stols, G., South African Journal of Education 30 pp. 439 - 456, 2010.
  • Spatial Learning and Computer Simulations in Science, Lindgren, R., & Schwartz, D. L., International Journal of Science Education, 31(3), 419–438, 2009.
  • Student perspectives on learning physics and their relationship with learning force and motion concepts: A study using Q methodology, Ramlo, S., Human Subjectivity, 2, pp 73-90, 2008.
  • Pengembangan Lembar Kerja Siswa Berbasis Inkuiri Melalui Media Virtual PhET Untuk Melatihkan Keterampilan Berpikir Kritis Siswa Pada Materi Pemanasan Global, K. Rohmah, Rachmadiarti F. & Setiawan B., Universitas Negeri Surabaya (Indonesian).
  • Kerja laboratorium Melalui Phet untuk meremediasi miskonsepsi siswa kelas VIII SMP Negeri 1 Sungai Raya pada materi Hukum Archimedes, Diar Dwi Winarto, Tanjungpura University (Indonesian).
  • Scientific Inquiry in Mathematics: A Case of Implementing Scientific Simulations for Analyzing Problems on Motion., Sokolowski, A..
  • Teachers using interactive simulations to scaffold inquiry instruction in physical science education, Geelan, D.R. & Fan, X., In J. Gilbert and B. Eilam (Eds.) Science Teachers' Use of Visual Representations. Dordrecht: Springer..
  • Action Research Paper for Master's in Interdisciplinary Studies at University of Northern Colorado: The Effect of Computer Simulations on Learning High School Physics, K. Bibbey.
  • Impact of Electronic Simulations on students’ learning in Lebanese 10th Grade Electricity Courses. (Ph.d research), F. Yehya.
  • Evaluating a Novel Instructional Sequence for Conceptual Development in Physics Using Interactive Simulations, Fan, X., Geelan, D. & Gillies, R., Submitted to the International Journal of Science Education, Under Review.